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1 Introduction

The Type IIB superstring theory has D=10 IIB supergravity as its effective field theory.

Until a few years ago, the Sl(2;R) invariance of the latter [1, 2] was thought to be an

artefact of the field theory approximation to string theory, but it is now believed that IIB

superstring theory is itself an approximation to some underlying non-perturbative theory

in which an Sl(2;Z) subgroup of Sl(2;R) survives as a symmetry [3, 4]. To the extent to

which this theory can be said to be a string theory it describes an entire Sl(2;Z) orbit of

‘(p, q)’ strings [5, 6] with the (1,0) string being the Green-Schwarz (GS) IIB superstring

and the (0,1) string the D-string. This explains why both the usual IIB superstring action,

and that of the D-string, break Sl(2;Z) (the action for the ‘fundamental’ string breaks

the full group, while the D-string action, describing (p, 1) strings, breaks it to Z). In

a recent paper [7], one of the authors presented a new Sl(2;Z)-covariant string action

that simultaneously describes the entire Sl(2;Z) orbit of (p, q) strings. We say ‘covariant’

rather than ‘invariant’ because an Sl(2;Z)-transformation of the worldsheet fields must

be accompanied by an Sl(2;Z)-transformation of the background. The purpose of this

paper is to present the supersymmetric generalization of this action in a form that makes

the Sl(2;Z) covariance manifest, i.e. the manifestly Sl(2;Z)-covariant IIB superstring.

The construction involves establishing the fermionic gauge invariance known as κ-

symmetry. It was shown already in [8] that κ-symmetry of the GS IIB superstring implies

constraints on the background that are equivalent to the on-shell superspace constraints

of IIB supergravity, but this derivation of them obscures their Sl(2;R)-invariance. In

contrast, κ-symmetry of the new IIB superstring action implies the on-shell IIB super-

gravity superspace constraints in Sl(2;R)-covariant form. Actually, we shall establish

here only that these constraints are sufficient for κ-symmetry but the results of [8] guar-

antee that they are also necessary. We remark that the IIB on-shell constraints have also

been shown to be sufficient for κ-symmetry of the D-3-brane [9], but they have not yet
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been shown to be necessary (although this is almost certainly the case). Similar results

have been found for other IIB D-branes [10, 11, 12] but the Sl(2;R) invariance of the

background is again obscured. Thus, the action proposed here offers by far the simplest

route to a derivation of the IIB supergravity constraints in manifestly Sl(2;R)-covariant

form as integrability conditions. Another motivation is the potential insight that a man-

ifestly Sl(2;Z)-covariant string might provide into a conjectural 12-dimensional theory

underlying IIB superstring theory [13, 14, 15].

We begin with a review of the string action of [7], rewriting it in a form that makes

the Sl(2;Z) covariance manifest. The action for the corresponding manifestly Sl(2;Z)-

covariant IIB superstring is formally identical, but the background is IIB superspace. We

prove the κ-symmetry of this action subject to the on-shell constraints of IIB supergravity.

We conclude with a brief discussion of some potential applications of our results.

2 The Sl(2;Z)-invariant String

The construction of [7] puts together two earlier observations:

(i) The tension of a super p-brane may be generated dynamically in a formulation con-

taining a world-volume p-form potential, which has no local degrees of freedom [16].

(ii) The Born–Infeld (BI) field on the world-sheet of the D-string also has no local

degrees of freedom, but the integer quantization of its electric field generates NS-

NS charge [17].

These two observations make it natural to replace the D-string tension, equivalent to

the magnitude of the RR 2-form charge, by a second BI potential. The two worldsheet

gauge fields can be assembled into an Sl(2) doublet, thereby allowing an Sl(2)-invariant

coupling to the background IIB supergravity fields. The tension of this Sl(2;Z)-invariant

string is generated dynamically; it depends on both the integer RR and NS-NS charges,

both of which arise due to electric field quantization.

Thus, the world-sheet fields comprise not only the target space coordinates but also

an Sl(2;R) doublet Ar, r = 1, 2, of abelian gauge potentials. The latter enter the action

via their ‘modified’ field-strengths

Fr = dAr −Br (2.1)

where Br are the pullbacks to the worldvolume of the NS and RR 2-form potentials. We

use the same symbol to denote spacetime forms and their pullbacks as it should be clear

which is intended from the context. In order to write an Sl(2;R)-invariant ‘F 2-term’, one

needs the background scalars. These belong to the coset Sl(2;R)/SO(2) or, equivalently

SU(1, 1)/U(1). We shall use the latter description here. Thus, the scalars are represented

by a complex SU(1, 1) doublet U r (r = 1, 2) satisfying the SU(1, 1)-invariant constraint

i
2
εrsU

r
Ū

s = 1 . (2.2)
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Viewing U as a 2× 2 matrix on which SU(1, 1) acts from the left, there is a commuting

action of U(1) from the right; we normalize the U(1) charge by taking U to have unit

charge. Gauging this U(1) reduces the number of independent scalars from three to two.

One can move freely between Fr and an SU(1, 1)-invariant complex field-strength F

using

F = U rFr , Fr = εrsIm (U s
F̄ ) . (2.3)

Similarly, Hr = dBr is the Sl(2;R) doublet of NS and RR background 3-form field

strengths, and H = U rHr the SU(1, 1)-invariant version. Introducing the left-invariant

SU(1, 1) Maurer–Cartan forms

P = 1
2
εrsdU

r
U

s , Q = 1
2
εrsdU

r
Ū

s , (2.4)

we can write the Bianchi identity for H as

DH + iH̄ ∧P = 0 , (2.5)

where D is the covariant exterior derivative constructed from the U(1) connection Q,

which as a consequence of (2.2) is real.

The complex dilaton-axion field of the IIB supergravity background can be constructed

as the projective invariant U 2(U 1)−1 = χ + ie−φ. It is sometimes convenient to use the

U(1) gauge ImU 1 = 0 and identify U 1 = e
φ
2 , U 2 = e

φ
2χ + ie−

φ
2 . Since we want to

maintain manifest Sl(2)-covariance, we will most of the time use the U ’s.

To complete the assembly of ingredients needed for the construction of a manifestly

SU(1, 1)-invariant action we define the complex scalar density

Φ = 1
2
εijFij . (2.6)

The Sl(2)-invariant string action is

S = 1
2

∫
d2σ λ(g + ΦΦ̄) . (2.7)

The metric is understood to be the pullback of the Sl(2;R)-invariant Einstein metric, and

g is its determinant, so the action is manifestly Sl(2;R)-invariant or, rather, covariant

since the invariance of Φ requires an Sl(2;R) transformation of the background. Note the

absence of a Wess–Zumino term; Φ already contains couplings to both the NS-NS and

RR sectors. The action is also invariant under space-time scale transformations:

X → ρX , A→ ρ2A , λ→ ρ−4λ .

We will briefly analyze the action (2.7) before moving on to the supersymmetric case

(for a complete demonstration that the equations of motion implied by (2.7) are those of

a (p, q) string we refer to ref. [7]). The equation of motion for the Lagrange multiplier λ

enforces the constraint

g + ΦΦ̄ = 0 . (2.8)
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The equations of motion for the Ar read

d {λRe (U rΦ̄)} = 0 . (2.9)

The entities inside the curly brackets must take some constant values. These are best

understood in a canonical framework. The space-components of the electric fields, the

conjugate momenta to Ar, are

Er = λRe (U rΦ̄) . (2.10)

When the world-sheet is a cylinder, the values of Er are quantized to be integers by

demanding gauge invariance [6]. We therefore let Er = εrsns, where nr is a doublet of

integers. This breaks Sl(2;R) to the subgroup Sl(2;Z). Equation (2.10) is readily solved

by setting

λΦ = −iU rnr . (2.11)

In order to identify the tension, we continue the canonical analysis to the coordinate

sector. The momenta are

Pm = λ
(
Ẋm(X ′)2 −X ′m(Ẋ ·X ′)

)
−Er(Br)mnX

′n , (2.12)

from which we deduce the following constraints:

0 = P ·X ′ ,

0 = (Pm + Er(Br)mnX
′n)2 + (λ

√
−g X ′)2 .

(2.13)

The effective tension is read off from the second of these equations as

T =<λ
√
−g>=< |U rnr|> . (2.14)

It is also clear from (2.13) that Er are the charges with which the string couples to the

background 2-forms Br. Since the metric entering the action was the Sl(2;R)-invariant

Einstein metric, this Sl(2;Z)-invariant tension refers to the Einstein frame. For constant

dilaton and axion, and with nr = (p, q), the tension becomes

T =
√
e−φq2 + eφ(p+ qχ)2 . (2.15)

Rescaling to the string frame by (gstring)mn = e
φ
2 (gEinstein)mn, and identifying the string

coupling constant as gs = eφ, the string frame tension takes the well-known form [5]

Ts =

√√√√( q
gs

)2

+ (p+ qχ)2 . (2.16)

Note that the tension and the phase of Φ naturally fit together in a ‘complex tension’ λΦ.
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3 The Sl(2;Z)-covariant Superstring

The action for the manifestly Sl(2;Z) superstring is formally identical to the bosonic

action (2.7), but the ‘coordinate’ worldsheet fields are now the superspace coordinates

ZM = (Xm, θµ, θ̄µ̄). Note that the two D=10 chiral spinors of IIB superspace have been

assembled into a single complex chiral spinor. As usual, we introduce the frame 1-forms

EA = (Ea, Eα, Eᾱ) and define the induced worldsheet metric via the pullback of Ea:

gij = Ei
aEj

bηab , (3.1)

where Ei
a = ∂iZ

MEM
a. The 2-form field strengths Fr are as before but the 2-form gauge

potentials Br are now pulled back from 2-forms on superspace. The complex 3-form

field strength H = U rdBr is the SU(1, 1)-invariant superspace field strength introduced

in [2]. We now turn to the issue of κ-symmetry.

Consider a local fermionic transformation of the type

δZM = ζαEα
M + ζ̄ ᾱEᾱ

M . (3.2)

The induced variation of the pullback of a superspace form Ω is given by

δΩ = LζΩ = (iζd+ diζ)Ω . (3.3)

We use this to calculate that the variation of the SU(1, 1)-invariant field-strength F is

δF = −iζH − iF̄ iζP + iF iζQ , (3.4)

where we have used δAr = iζBr. The variation of the induced metric is

δgij = 2E(i
aEj)

Bζα TBα
bηab + c.c. (3.5)

where TBC
A is the superspace torsion.

At this point we shall use the known on-shell superspace constraints of IIB supergrav-

ity. They are [2]

Haαβ = 2i(γa)αβ ,

Habᾱ = −i(γabP )α ,

Tαβ̄
a = i(γa)αβ ,

Tᾱβ̄
γ = iδ(α

γPβ) −
i
2
(γa)αβ(γ

aP )γ ,

Pᾱ = 0 , Qα = 0 ,

(3.6)

where P in the expressions for the dimension 1/2 parts ofH and T is understood as the

spinor component Pα. These are the non-vanishing fields at dimensions 0 and 1/2, up to

components that are obtained from these by complex conjugation. It is straightforward to

use these supergravity constraints to obtain the transformation of the constraint ((2.8)):

At dimension 0 (which is all that is relevant for bosonic backgrounds) we find{
δ(g + ΦΦ̄)

}
(0)

= 2iĒi
{
gγiζ + Φεijγj ζ̄

}
+ c.c.

= −2iĒiγ
iΞ
{
Ξζ − Φζ̄

}
+ c.c.

(3.7)
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where, as in [16], we have introduced the (real) matrix

Ξ = 1
2
εijγij (3.8)

satisfying

{Ξ, γi} = 0 Ξ2 = −g . (3.9)

At dimension 1/2 (at which we find terms involving background fermions) the metric has

no variation, while {
δΦ̄
}

(1/2)
= −iP̄α(Ξζ − Φζ̄)α . (3.10)

Thus, the full variation of the constraint, in arbitrary (on-shell) backgrounds, is

δ(g + ΦΦ̄) = −i(2Eiγ
iΞ + ΦP̄ )(Ξζ − Φζ̄) + c.c. (3.11)

If the action is to be invariant the transformation (3.11) must be cancelled by a

variation of the Lagrange multiplier λ. This means that the expression in (3.11) must

vanish modulo the constraint, which requires ζ to take the form

ζ = Ξκ+ Φκ̄ , (3.12)

where the complex chiral spacetime-spinor parameter κ is arbitrary. Given this, we find

that

δ(g + ΦΦ̄) = (g + ΦΦ̄)(2iEiγ
iΞκ+ iΦP̄ κ) + c.c. (3.13)

This can clearly be cancelled by a variation of λ.

To summarize, the action is invariant under the following fermionic gauge transfor-

mations of the worldsheet fields

δλ = −i(2Eiγ
iΞ + ΦP̄ )κ + c.c.

δZM = (Ξκ+ Φκ̄)αEα
M + (Ξκ̄ + Φ̄κ)ᾱEᾱ

M

δ(Ar)i = Ei
A(Ξκ+ Φκ̄)α(Br)αA + c.c.

(3.14)

It can be shown that these κ-symmetry transformations effectively remove half of the

fermionic degrees of freedom, so that there is an on-shell matching of bosonic and fermionic

world-sheet fields. This will be demonstrated below for non-vanishing Φ.

4 Discussion

The action presented in this paper contains in its spectrum the entire orbit of superstrings

coupling with charges (p, q) to the RR and NS-NS 2-form potentials. The spectrum is not

confined to coprime pairs of charges, but a restriction to this irreducible orbit is clearly

consistent, at least at the first-quantized level. Such a restriction preserves the Sl(2;Z)

invariance but breaks the scale-invariance. The only sector preserving scale-invariance is

the Sl(2;Z) singlet (p, q) = (0, 0). This sector describes a tensionless, or null, superstring,

unrelated to the fundamental superstring by any known duality. It too is removed from
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the spectrum by the restriction to the single Sl(2;Z) orbit containing the fundamental

string. In this case we may assume that Φ is non-zero, and this allows a reformulation of

the κ-symmetry transformations.

In section 3, the complex chiral spinor parameter κ was unconstrained but entered

into all transformations multiplied by a matrix of half maximal rank. For non-zero Φ the

constraint imposed by λ ensures that the induced metric is non-degenerate, so we can

divide by
√
−g. Setting Φ = eiϑ|Φ|, we can then rewrite (3.12) as

[
ζ

ζ̄

]
= 1

2
(1 + Γ)

[
ζ

ζ̄

]
, (4.1)

where

Γ =
1
√
−g

[
0 eiϑΞ

e−iϑΞ 0

]
. (4.2)

Note that Γ2 = 1, so that the matrix 1
2
(1 + Γ) is a projector. Since tr(Γ) = 0 it

projects onto a space of half the maximum dimension.

The (p, q) strings treated here represent only part of the BPS spectrum of the non-

perturbative IIB superstring theory. One would like a manifestly Sl(2;Z)-covariant action

for all IIB p-branes. The first case to consider after strings is the D-3-brane, which is an

S-duality singlet. The bosonic action was shown in [18, 19] to be Sl(2;Z)-covariant in the

sense that an Sl(2;Z) transformation of the background can be compensated by a world-

volume duality transformation of the BI field strength. A manifestly Sl(2;Z)-covariant

formulation of the linearized bosonic action has been given in [20], and elaborated on

in [21, 22]; the essential ingredient is a self-duality condition on a complex BI field. The

next case to consider is the S-duality doublet of solitonic and Dirichlet 5-branes. Given

that there also exist bound states describing (p, q) 5-branes one would expect there to be

an Sl(2;Z)-covariant 5-brane action, but there is at present little indication of how this

might be constructed.

Finally, it seems possible that one could take the new superstring action presented

here as the starting point for an Sl(2;Z)-covariant string perturbation theory. Note

that although all (p, q) strings other than the (1,0) string are non-perturbative within

conventional string theory, the Sl(2;Z) symmetry is not intrinsically non-perturbative

because (in contrast to the analogous Sl(2;Z) symmetry of D=4 N=4 supersymmetric

gauge theories) it does not exchange electric with magnetic degrees of freedom. Moreover,

a generalization of the Veneziano amplitude has been proposed in which poles correspond

to states of (p, q) strings [23]. It would be very interesting to investigate whether an

Sl(2;Z)-covariant perturbation theory based on the action presented here could reproduce

this or a similar result. The first step towards such a perturbation theory would seem to

be gauge fixing of the κ-symmetry. This can probably be done without breaking manifest

Lorentz covariance, along the lines of ref. [24], but it is harder to see how the Sl(2;Z)

covariance could also be maintained. It might be made possible through the introduction

of SU(1, 1) harmonics. We leave this to the future.
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